ABSTRACT

Background

GBR 1302, a bispecific antibody based on Glenmark’s BEAT® platform, is designed to recruit cytotoxic T cells (independent of their specificity) to HER2-positive cancer cells where they are activated by the CD3ε-specific domain of the molecule. Preclinically, GBR 1302 has demonstrated potent killing of HER2-positive human cancer cells (HER2 3+ or 2+ by IHC HercepTest), as well as growth suppression of the trastuzumab-resistant cell line JIMT–1. In contrast, the GBR 1302 concentration required to kill primary cardiomyocytes with normal HER2 levels was up to 1000 times greater than the concentration needed to kill HER2 3+ tumor cell lines. This study will determine safety and tolerability of GBR 1302 monotherapy in subjects with HER2-positive cancers.

Methods

Part 1 (dose-finding) of this ongoing phase 1 study (NCT02829372) is enrolling adults with progressing HER2-positive solid tumors for which no standard treatment is available. Intravenous GBR 1302 is given every 2 weeks in 28-day cycles at escalating doses. Each of the first 4 cohorts includes a single subject; subsequent cohorts enroll subjects using a standard 3+3 design. Primary endpoints are: maximum tolerated dose (MTD) of GBR 1302; and relationship of GBR 1302 with the incidence, nature, and intensity of adverse events. After Cycle 1, subjects continue GBR 1302 treatment until disease progression or unacceptable toxicity. Part 2 (expansion) will treat subjects at the MTD to further evaluate anti-tumor activity, as well as safety and pharmacokinetics. Due to the known cardiotoxic potential of classic HER2-targeting strategies, this study incorporates a rigorous serological and echocardiographic surveillance schedule. The effects of GBR 1302 on the adaptive immune system will also be studied at cellular and serological levels in translational research.
GBR 1302 OVERVIEW

- GBR 1302 is a novel HER2xCD3 bispecific antibody, engineered using the Glenmark Bispecific Engagement by Antibodies based on the T cell receptor (BEAT®) platform (Figure 1)
 - Includes a single chain variable fragment arm with anti-HER2 specificity (based on trastuzumab) and a fragment antigen binding (Fab) arm with anti-CD3ε specificity
 - GBR 1302 is designed to simultaneously engage the CD3 molecule on T lymphocytes and the HER2 antigen on tumor cells (HER2 3+ or 2+ overexpression), thereby killing the bound target cells through redirected lysis
 - GBR 1302 has full antibody-like pharmacokinetics with a long elimination half-life of approximately 138 hours (in rat and mouse), similar to IgG, permitting intermittent dosing
 - GBR 1302 has low immunogenicity potential

Figure 1. GBR 1302 Design

- GBR 1302 has demonstrated potent and preferential killing of HER2-overexpressing cancer cells at low femtomolar concentrations (Figure 2), as well as suppression of the growth of JIMT-1, a trastuzumab-resistant cell line (data not shown)

Figure 2. GBR 1302 Killing of Target Cells Correlates with IHC Rank/HER2 Expression
KEY FINDINGS

The concentration needed to kill primary cardiomyocytes with normal HER2 levels was approximately up to 1000 times greater than the concentration needed to kill HER2-overexpressing cell lines (Figure 3)

- 2.5 to 3 log difference in killing potency between immunohistochemistry (IHC) 2+/3+ tumor cell lines and normal tissue (primary cardiomyocytes)
- Interdonor variability of therapeutic window was small

Figure 3. Therapeutic Window of GBR 1302

PHASE I STUDY IN HER2-POSITIVE CANCERS (NCT02829372)

Objectives

- To identify the maximum tolerated dose (MTD) and safety profile of GBR 1302 in subjects with HER2 positive cancers
- To characterize the anti-tumor activity, pharmacokinetics, and immunogenicity of GBR 1302
Dosing Schedule

- Intravenous GBR 1302 will be administered every 2 weeks in 28-day cycles at escalating doses (Table 1)

Table 1. Study Cohorts and Dose Escalation Schedule

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Cycle 1 (28 days)</th>
<th>Subsequent Cycles (28 days per cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1 Dose, ng/kg</td>
<td>Day 15 Dose, ng/kg</td>
</tr>
<tr>
<td>1 (single subject)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2 (single subject)</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>3 (single subject)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>4 (single subject)</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>5 (3+3 design)</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>6 (3+3 design)</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>7 (3+3 design)</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>8 (3+3 design)</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>9 (3+3 design)</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>10 (3+3 design)</td>
<td>800</td>
<td>1000</td>
</tr>
</tbody>
</table>

Determination of Maximum Tolerated Dose

- Dose escalation follows a classical 3+3 design with accelerated escalation in the 4 lowest dose levels
- The observation period for dose-limiting toxicity (DLT) is the 28 days following the first administration of study drug in the subject (Day 1 of Cycle 1)
- DLT was defined as any of the following events:
 - Non-hematologic treatment-emergent adverse event (AE), Common Terminology Criteria for Adverse Events (CTCAE) Grade 3 or higher
 - Hematologic toxicity of CTCAE Grade 3 or higher lasting 7 days
 - Any new electrocardiogram abnormality
- After Cycle 1, subjects will continue GBR 1302 treatment until either disease progression or unacceptable toxicity takes place
Study Endpoints

Primary
- Maximum tolerated dose of GBR 1302, based on the number of DLTs during the first 28 days after the first administration of study drug (i.e., Cycle 1) in each cohort
- The relationship of GBR 1302 dose with the incidence, nature, and intensity of AEs, based on CTCAE grading

Secondary
- Objective Response Rate (ORR) - Complete Response (CR) or Partial Response (PR) for selected solid tumors
- Disease Control Rate (DCR) - CR or PR or Stable Disease (SD)
- Duration of disease control - Drug start date to the date of disease progression or death for subjects who had CR, PR, or SD during treatment
- Pharmacokinetics of GBR 1302
- Immunogenicity of GBR 1302 in terms of anti-drug antibody (ADA) formation assessed from baseline until end of treatment (EOT)

Exploratory
- Changes in pharmacodynamic biomarkers from baseline
- Difference in time on previous line of cancer treatment compared to GBR 1302
- Difference in time to disease progression on previous line of cancer treatment compared to GBR 1302

STUDY STATUS
- As of June 2017, this study is recruiting participants in Germany with US sites opening soon; the trial is currently enrolling to the dose-finding portion and will expand into disease-specific indications at the MTD to also determine early efficacy